CNC Robotics And Automation:

Getting Set Up

Equally important is the need for establishing a controlled process for performing setup. Many owner/operators facing the move to automation are concerned that they’ll incur extra setup requirements to facilitate the use of robotics. In fact, many new users of automated machine tools find that setup time is actually reduced. This is true because once the process is controlled, it is no longer subject to time-consuming variables such as operator preference.

Imagine a part running on the same machine over three shifts daily. Every morning, Operator A sets up his material to the left of his CNC milling machine. At the start of the second shift, Operator B arranges inbound material to right. Later that evening, Operator C stays with B’s material setup but adjusts machining speeds and feeds according to personal preferences.

I’ve actually walked into shops and found operators working different shifts using their own CNC programs to run exactly the same parts on the same machines,” Mr. Burg recalls. With automation comes the necessity for consistency and controlled setup and working processes. The advent of systematic operations that prescribe material flow, tool selection, chuck type, gripper details, and a host of other parameters also eliminates the type of counter-productive Operator A, B and C scenarios outlined.

The need to keep unbridled fluctuations under control to keep production—and profits—consistent is another indicator pointing to an impending move to automation. Users of manually loaded CNC machine tools have historically come to expect production rates to vary widely from shift to shift and day to day. In fact, variations in similar processes can vary as much as 30 percent. With automated cells in place, owner/operators typically find that production rates vary less than 5 percent from one shift to another.

As an example, one customer who had 14 identical machines operating on a 7-second cycle time to machine aluminum substrate components for computer hard drives. The variations measured from machine operator to machine operator essentially reflected their individual dexterity. While some operators consistently ran more than 2.000 pieces in an 8-hour shift, others could turn out no more than 1.200 good parts.
With automation, the process on all 14 machines immediately produced 4.000 parts per shift. Results were consistent from machine to machine and shift to shift, with variations limited to increments of no more than one-half of one percent. Similarly, tracking spindle uptime as a measure of productivity is another indicator that can clearly point to the need to move to automation.

Staying Power

Most shops find that manually loaded machine tools are functional about 65 percent of the available time. On the other hand, users of automated machine tools can expect their machines to function more than 85 percent of the available time. As real as these numbers are, many shop owners contemplating the move to robotics often find them hard to comprehend.

Managers of shops with four or five CNC machine tools can almost always accurately estimate the number of spindles running at any given time. However, that same task becomes daunting in a shop with 35 or 40 machine tools. In fact, he notes that while his team commonly finds one out of every two spindles down in shops this size, owner/operators doubt the numbers—until they walk the floor, often finding no more than one-third of all their machines making parts on a consistent basis.

You can put this process in control and automate it. Conservatively speaking, this is going to give you one free spindle for every four on your shop floor. We feel comfortable saying this because with a good robot interface, it’s not at all uncommon for us to easily bring a shop up to 95 percent utilization.

Cost and ROI

While the ongoing development of machine tool and automation technology has done a remarkable job of keeping pace with industry’s increased demand for more reliable and productive systems, affordability remains as important an issue as ever. Naturally, today’s shop owners typically seek an accurate measure of the return they can expect on their investment in automation. Fortunately, they have at their disposal several sources of financial and technical guidance.

Evaluating the return on investment a shop owner can expect from a move to automation comes down to knowing the market for the parts that will be produced by the cell operation being considered. In fact, it is often the prospect of winning a large contract to machine significant quantities of identical or similar parts that encourages the managers of shops to consider automation in the first place. Of course, the cost of producing those parts is a critical factor in the calculations required to accurately project profitability.

Typically, shop owners can expect the transition to robotics and automation to entail a reasonable payback when a group of two or three machines are involved in the production of similar parts on a regular basis. Ideally, these machines should each have dedicated operators and be running at least two, if not three, shifts daily during the workweek. Even with the variable cost of labor from shop to shop, such a scenario is typically a candidate for a successful automation effort.

Another method of anticipating and evaluating the cost of moving to robotics is to apply a spindle-based calculation. Most owners usually find that when the cost of automating a spindle can be brought within the range of 70.000, euro per spindle, the time is usually right to make the move to automation. In other words, estimating the cost of a spindle at about 150.000, euro, the projected cost of most successful automation efforts generally falls in the range of 50 percent of the cost of the CNC machine tool.

Of course, part weight, operator fatigue and other factors that put operators at risk of on-the-job injuries can skew calculations to the point that can justify even greater investments in robotics and automation. Fortunately, machine shop managers are not faced with making these decisions alone.

As the metalworking industry becomes increasingly more competitive, more owner/operators are looking to robotics and automation for solutions to the pressures they face to remain productive and profitable. With the proliferation of manufacturers specializing in motion control, work handling, tooling and software applications for CNC machine tool automation, there has probably never been a more advantageous time for medium- to small-size shops to evaluate a move to automation.